$\newenvironment {prompt}{}{} \newcommand {\ungraded }{} \newcommand {\todo }{} \newcommand {\oiint }{{\large \bigcirc }\kern -1.56em\iint } \newcommand {\mooculus }{\textsf {\textbf {MOOC}\textnormal {\textsf {ULUS}}}} \newcommand {\npnoround }{\nprounddigits {-1}} \newcommand {\npnoroundexp }{\nproundexpdigits {-1}} \newcommand {\npunitcommand }{\ensuremath {\mathrm {#1}}} \newcommand {\RR }{\mathbb R} \newcommand {\R }{\mathbb R} \newcommand {\N }{\mathbb N} \newcommand {\Z }{\mathbb Z} \newcommand {\sagemath }{\textsf {SageMath}} \newcommand {\d }{\mathop {}\!d} \newcommand {\l }{\ell } \newcommand {\ddx }{\frac {d}{\d x}} \newcommand {\zeroOverZero }{\ensuremath {\boldsymbol {\tfrac {0}{0}}}} \newcommand {\inftyOverInfty }{\ensuremath {\boldsymbol {\tfrac {\infty }{\infty }}}} \newcommand {\zeroOverInfty }{\ensuremath {\boldsymbol {\tfrac {0}{\infty }}}} \newcommand {\zeroTimesInfty }{\ensuremath {\small \boldsymbol {0\cdot \infty }}} \newcommand {\inftyMinusInfty }{\ensuremath {\small \boldsymbol {\infty -\infty }}} \newcommand {\oneToInfty }{\ensuremath {\boldsymbol {1^\infty }}} \newcommand {\zeroToZero }{\ensuremath {\boldsymbol {0^0}}} \newcommand {\inftyToZero }{\ensuremath {\boldsymbol {\infty ^0}}} \newcommand {\numOverZero }{\ensuremath {\boldsymbol {\tfrac {\#}{0}}}} \newcommand {\dfn }{\textbf } \newcommand {\unit }{\mathop {}\!\mathrm } \newcommand {\eval }{\bigg [ #1 \bigg ]} \newcommand {\seq }{\left ( #1 \right )} \newcommand {\epsilon }{\varepsilon } \newcommand {\phi }{\varphi } \newcommand {\iff }{\Leftrightarrow } \DeclareMathOperator {\arccot }{arccot} \DeclareMathOperator {\arcsec }{arcsec} \DeclareMathOperator {\arccsc }{arccsc} \DeclareMathOperator {\si }{Si} \DeclareMathOperator {\scal }{scal} \DeclareMathOperator {\sign }{sign} \newcommand {\arrowvec }{{\overset {\rightharpoonup }{#1}}} \newcommand {\vec }{{\overset {\boldsymbol {\rightharpoonup }}{\mathbf {#1}}}\hspace {0in}} \newcommand {\point }{\left (#1\right )} \newcommand {\pt }{\mathbf {#1}} \newcommand {\Lim }{\lim _{\point {#1} \to \point {#2}}} \DeclareMathOperator {\proj }{\mathbf {proj}} \newcommand {\veci }{{\boldsymbol {\hat {\imath }}}} \newcommand {\vecj }{{\boldsymbol {\hat {\jmath }}}} \newcommand {\veck }{{\boldsymbol {\hat {k}}}} \newcommand {\vecl }{\vec {\boldsymbol {\l }}} \newcommand {\uvec }{\mathbf {\hat {#1}}} \newcommand {\utan }{\mathbf {\hat {t}}} \newcommand {\unormal }{\mathbf {\hat {n}}} \newcommand {\ubinormal }{\mathbf {\hat {b}}} \newcommand {\dotp }{\bullet } \newcommand {\cross }{\boldsymbol \times } \newcommand {\grad }{\boldsymbol \nabla } \newcommand {\divergence }{\grad \dotp } \newcommand {\curl }{\grad \cross } \newcommand {\lto }{\mathop {\longrightarrow \,}\limits } \newcommand {\bar }{\overline } \newcommand {\surfaceColor }{violet} \newcommand {\surfaceColorTwo }{redyellow} \newcommand {\sliceColor }{greenyellow} \newcommand {\vector }{\left \langle #1\right \rangle } \newcommand {\sectionOutcomes }{} \newcommand {\HyperFirstAtBeginDocument }{\AtBeginDocument }$

In this section, we will derive the equation for the reflection coefficient. The reflection coefficient relates the forward-going voltage with reflected voltage.

### Reflection coefficient at the load

Equations eq:RCvtl-eq:RCctl represent the voltage and current on a lossless transmission line shown in Figure fig:RCTLCircuit. Figure 1: Transmission Line connects generator and the load.

We set up the z-axis so that the $z=0$ is at the load, and the generator is at $z=-l$. At $z=0$, the load impedance is connected. The definition of impedance is $Z=V/I$, therefore at the z=0 end of the transmission line, the voltage and current on the transmission line at that point have to obey boundary condition that the load impedance imposes.

Substituting z=0, the boundary condition, in Equations eq:RCvtl-eq:RCctl, we get Equations eq:RCvtl1-eq:RCctl1.

Dividing the two above equations, we get the impedance at the load.

We can now solve the above equation for $\tilde {V}_0^-$

Lowercase $z_L$ is called the ”normalized load impedance”. It is the actual impedance divided by the transmission line impedance $z_L=\frac {Z_L}{Z_0}$. For example, if the load impedance is $Z_L=100 \Omega$, and the transmission-line impedance is $Z)=50 \Omega$, then the normalized impedance is $z_L=\frac {100 \Omega }{50 \Omega }=2$. Normalized impedance is a unitless quantity.

#### Example

(a)
100 $\Omega$ transmission line is terminated in a series connection of a 50 $\Omega$ resistor and 10 pF capacitor. The frequency of operation is 100 MHz. Find the voltage reflection coefficient.
(b)
For purely reactive load $Z_L=j 50 \Omega$, find the reflection coefficient.

### Voltage and Current on a transmission line

Now that we related forward and reflected voltage on a transmission line with the reflection coefficient at the load, we can re-write the equations for the current and voltage on a transmission line as:

We see that if we know the length of the line, line type, the load impedance, and the transmission line impedance, we can calculate all variables above, except for $\tilde {V}_0^+$. In the following chapters, we will derive the equation for the forward going voltage at the load, but first, we will look at little more at the various reflection coefficients on a transmission line.

### Reflection coefficient anywhere on the line

Equations eq:RCvtl-eq:RCctl can be concisely written as

Where $\tilde {V}(z)^+$ is the forward voltage anywhere on the line, $\tilde {V}(z)^-$ is reflected voltage anywhere on the line, $\tilde {I}(z)^+$ is the forward current anywhere on the line, and $\tilde {I}(z)^-$ is the reflected current anywhere on the line.

We can then define a reflection coefficient anywhere on the line as

Since we already defined the reflection coefficient at the load, the reflection at any point on the line $z=-l$ is

### Reflection coefficient at the input of the transmission line

Using the reasoning above, the reflection coefficient at the input of the line whose length is $l$ is