We introduce limits.

1 The basic idea

Consider the function

\[ f(x) = \frac {\sin (x)}{x}. \]

While \(f(x)\) is undefined at \(x=0\), we can still plot \(f(x)\) at other values near \(x = 0\).

Use the graph of \(f(x) = \frac {\sin (x)}{x}\) above to answer the following question: What is \(f(0)\)?
\(0\) \(f(0)\) \(1\) \(f(0)\) is undefined it is impossible to say

Nevertheless, we can see that as \(x\) approaches zero, \(f(x)\) approaches one. From this setting we come to our definition of a limit.

Use the graph of \(f(x) = \frac {\sin (x)}{x}\) above to finish the following statement: “A good guess is that…”
\(\lim _{x\to 0}\frac {\sin (x)}{x} = 1\). \(\lim _{x\to 1}\frac {\sin (x)}{x} = 0\). \(\lim _{x\to 1}f(x) = \frac {\sin (1)}{1}\). \(\lim _{x\to 0}f(x) = \frac {\sin (0)}{0}=\infty \).
Consider the following graph of \(y=f(x)\) Use the graph to evaluate the following. Write DNE if the value does not exist.
(a)
\(f(-2) \begin{prompt}=\answer {1}\end{prompt}\)
(b)
\(\lim _{x\to -2}f(x)\begin{prompt}=\answer {1}\end{prompt}\)
(c)
\(f(-1) \begin{prompt}=\answer {2}\end{prompt}\)
(d)
\(\lim _{x\to -1}f(x) \begin{prompt}=\answer {2}\end{prompt}\)
(e)
\(f(0) \begin{prompt}=\answer {-2}\end{prompt}\)
(f)
\(\lim _{x\to 0} f(x) \begin{prompt}=\answer {0}\end{prompt}\)
(g)
\(f(1) \begin{prompt}=\answer {DNE}\end{prompt}\)
(h)
\(\lim _{x\to 1} f(x) \begin{prompt}=\answer {-2}\end{prompt}\)

2 Limits might not exist

Limits might not exist. Let’s see how this happens.

Tables can be used to help guess limits, but one must be careful.

Consider \(f(x) = \sin \left (\frac {\pi }{x}\right )\). Fill in the tables below rounding to three decimal places:
\[ \begin{array}{l|l} x & f(x) \\ \hline 0.1 & \begin{prompt}\answer {0}\end{prompt}\\ 0.01 & \begin{prompt}\answer {0}\end{prompt}\\ 0.001 & \begin{prompt}\answer {0}\end{prompt}\\ 0.0001 & \begin{prompt}\answer {0}\end{prompt}\\ \end{array} \]
We may rush and say that, based on the table above,
\[ \lim _{x\to 0}\sin \left (\frac {\pi }{x}\right )=0. \]
But, recall the definition of the limit: \(L\) is the limit if the value of \(f(x)\) is as close as one wishes to \(L\) for all \(x\) sufficiently close, but not equal to, \(a\).

From this table we can see that \(f(x)(=0)\) is as close as one wishes to \(L(=0)\) for some values \(x\) that are sufficiently close to \(a(=0)\). But this does does not satisfy the definition of the limit, at least, not yet.

But, wait! Fill in another table.

\[ \begin{array}{l|l} x & f(x) \\ \hline 0.3 & \begin{prompt}\answer {-.866}\end{prompt} \\ 0.03 & \begin{prompt}\answer {-.866}\end{prompt} \\ 0.003 & \begin{prompt}\answer {-.866}\end{prompt} \\ 0.0003 & \begin{prompt}\answer {-.866}\end{prompt} \end{array} \]
What do these two tables tell us about
\[ \lim _{x\to 0}\sin \left (\frac {\pi }{x}\right )? \]
\(\lim _{x\to 0}\sin \left (\frac {\pi }{x}\right ) = 0\) \(\lim _{x\to 0}\sin \left (\frac {\pi }{x}\right )=1\) \(\lim _{x\to 0}\sin \left (\frac {\pi }{x}\right ) = -.866\) \(\lim _{x\to 0}\sin \left (\frac {\pi }{x}\right ) = -.433\) The limit does not exist.

3 One-sided limits

While we have seen that \(\lim _{x\to 2}\lfloor x\rfloor \) does not exist, its graph looks much “nicer” near \(a=2\) than does the previous graph near \(a=0\). More can be said about the function \(\lfloor x\rfloor \) and its behavior near \(a=2\).

4 When you put this all together

One-sided limits help us talk about limits.

Evaluate the expressions by referencing the graph below. Write DNE if the limit does not exist.
(a)
\(\lim _{x\to 4} f(x) \begin{prompt}=\answer {8}\end{prompt}\)
(b)
\(\lim _{x\to -3} f(x)\begin{prompt}=\answer {6}\end{prompt}\)
(c)
\(\lim _{x\to 0} f(x) \begin{prompt}=\answer {DNE}\end{prompt}\)
(d)
\(\lim _{x\to 0^-} f(x) \begin{prompt}=\answer {-2}\end{prompt}\)
(e)
\(\lim _{x\to 0^+} f(x) \begin{prompt}=\answer {-1}\end{prompt}\)
(f)
\(f(-2) \begin{prompt}=\answer {8}\end{prompt}\)
(g)
\(\lim _{x\to 2^-} f(x) \begin{prompt}=\answer {7}\end{prompt}\)
(h)
\(\lim _{x\to -2^-} f(x) \begin{prompt}=\answer {6}\end{prompt}\)
(i)
\(\lim _{x\to 1} f(x) \begin{prompt}=\answer {3}\end{prompt}\)
(j)
\(f(0) \begin{prompt}=\answer {-3/2}\end{prompt}\)
(k)
\(\lim _{x\to -3^-} f(x) \begin{prompt}=\answer {6}\end{prompt}\)
(l)
\(\lim _{x\to -2^+} f(x) \begin{prompt}=\answer {2}\end{prompt}\)
2025-01-06 19:53:41