$\newenvironment {prompt}{}{} \newcommand {\ungraded }[0]{} \newcommand {\inputGif }[1]{The gif ‘‘#1" would be inserted here when publishing online. } \newcommand {\todo }[0]{} \newcommand {\oiint }[0]{{\large \bigcirc }\kern -1.56em\iint } \newcommand {\mooculus }[0]{\textsf {\textbf {MOOC}\textnormal {\textsf {ULUS}}}} \newcommand {\npnoround }[0]{\nprounddigits {-1}} \newcommand {\npnoroundexp }[0]{\nproundexpdigits {-1}} \newcommand {\npunitcommand }[1]{\ensuremath {\mathrm {#1}}} \newcommand {\RR }[0]{\mathbb R} \newcommand {\R }[0]{\mathbb R} \newcommand {\N }[0]{\mathbb N} \newcommand {\Z }[0]{\mathbb Z} \newcommand {\sagemath }[0]{\textsf {SageMath}} \newcommand {\d }[0]{\mathop {}\!d} \newcommand {\l }[0]{\ell } \newcommand {\ddx }[0]{\frac {d}{\d x}} \newcommand {\zeroOverZero }[0]{\ensuremath {\boldsymbol {\tfrac {0}{0}}}} \newcommand {\inftyOverInfty }[0]{\ensuremath {\boldsymbol {\tfrac {\infty }{\infty }}}} \newcommand {\zeroOverInfty }[0]{\ensuremath {\boldsymbol {\tfrac {0}{\infty }}}} \newcommand {\zeroTimesInfty }[0]{\ensuremath {\small \boldsymbol {0\cdot \infty }}} \newcommand {\inftyMinusInfty }[0]{\ensuremath {\small \boldsymbol {\infty -\infty }}} \newcommand {\oneToInfty }[0]{\ensuremath {\boldsymbol {1^\infty }}} \newcommand {\zeroToZero }[0]{\ensuremath {\boldsymbol {0^0}}} \newcommand {\inftyToZero }[0]{\ensuremath {\boldsymbol {\infty ^0}}} \newcommand {\numOverZero }[0]{\ensuremath {\boldsymbol {\tfrac {\#}{0}}}} \newcommand {\dfn }[0]{\textbf } \newcommand {\unit }[0]{\mathop {}\!\mathrm } \newcommand {\eval }[1]{\bigg [ #1 \bigg ]} \newcommand {\seq }[1]{\left ( #1 \right )} \newcommand {\epsilon }[0]{\varepsilon } \newcommand {\phi }[0]{\varphi } \newcommand {\iff }[0]{\Leftrightarrow } \DeclareMathOperator {\arccot }{arccot} \DeclareMathOperator {\arcsec }{arcsec} \DeclareMathOperator {\arccsc }{arccsc} \DeclareMathOperator {\si }{Si} \DeclareMathOperator {\scal }{scal} \DeclareMathOperator {\sign }{sign} \newcommand {\arrowvec }[1]{{\overset {\rightharpoonup }{#1}}} \newcommand {\vec }[1]{{\overset {\boldsymbol {\rightharpoonup }}{\mathbf {#1}}}} \newcommand {\point }[1]{\left (#1\right )} \newcommand {\pt }[1]{\mathbf {#1}} \newcommand {\Lim }[2]{\lim _{\point {#1} \to \point {#2}}} \DeclareMathOperator {\proj }{\mathbf {proj}} \newcommand {\veci }[0]{{\boldsymbol {\hat {\imath }}}} \newcommand {\vecj }[0]{{\boldsymbol {\hat {\jmath }}}} \newcommand {\veck }[0]{{\boldsymbol {\hat {k}}}} \newcommand {\vecl }[0]{\vec {\boldsymbol {\l }}} \newcommand {\uvec }[1]{\mathbf {\hat {#1}}} \newcommand {\utan }[0]{\mathbf {\hat {t}}} \newcommand {\unormal }[0]{\mathbf {\hat {n}}} \newcommand {\ubinormal }[0]{\mathbf {\hat {b}}} \newcommand {\dotp }[0]{\bullet } \newcommand {\cross }[0]{\boldsymbol \times } \newcommand {\grad }[0]{\boldsymbol \nabla } \newcommand {\divergence }[0]{\grad \dotp } \newcommand {\curl }[0]{\grad \cross } \newcommand {\lto }[0]{\mathop {\longrightarrow \,}\limits } \newcommand {\bar }[0]{\overline } \newcommand {\surfaceColor }[0]{violet} \newcommand {\surfaceColorTwo }[0]{redyellow} \newcommand {\sliceColor }[0]{greenyellow} \newcommand {\vector }[1]{\left \langle #1\right \rangle } \newcommand {\sectionOutcomes }[0]{} \newcommand {\HyperFirstAtBeginDocument }[0]{\AtBeginDocument } \newcommand {\descriptionlabel }[1]{\hspace {\labelsep }\textbf {#1:}}$

Two young mathematicians discuss the novel idea of the “slope of a curve.”

Check out this dialogue between two calculus students (based on a true story):
Devyn
Riley, do you remember “slope?’
Riley
Most definitely. “Rise over run.”
Devyn
You know it.
Riley
“Change in $y$ over change in $x$.”
Devny
That’s right.
Riley
Brought to you by the letter “$m$.”
Devny
Enough! My important question is: could we define “slope” for a curve that’s not a straight line?
Riley
Well, maybe if we “zoom in” on a curve, it would look like a line, and then we could call it “the slope at that point.”
Devyn
Ah! And this “zoom in” idea sounds like a limit!
Riley
This is so awesome. We just made math!

The concept introduced above, of the “slope of a curve at a point,” is in fact one of the central concepts of calculus. It will, of course, be completely explained. Let’s explore Devyn and Riley’s ideas a little more, first.

To find the “slope of a curve at a point,” Devyn and Riley spoke of “zooming in” on a curve until it looks like a line. When you zoom in on a smooth curve, it will eventually look like a line. This line is called the tangent line.

Which of the following approximate the slope of the “zoomed line”? (You can select more than one.)
$\frac {f(x_1)-f(a)}{x_2-a}$ $\frac {f(x_1)-f(a)}{a-x_1}$ $\frac {f(x_1)-f(a)}{x_1-a}$ $\frac {f(x_1)-a}{x_1-a}$ $\frac {f(a)-f(x_2)}{a-x_2}$ $\frac {f(x_2)-f(a)}{x_2-a}$ $\frac {x_2-a}{f(x_2)-f(a)}$ $\frac {f(x_1)-f(a)}{f(x_2)-f(a)}$ $a(f(x_2)-f(x_1))$ $\frac {f(a)-f(x_1)}{a-x_1}$
Let $f(x) = 3x-1$. Zoom in on the curve around $a = -2$ so that $x_1 = -1.9$. Use one of the formulations in the problem above to approximate the slope of the curve. The slope of the curve at $a = -2$ is approximately…$\answer {3}$
Repeat the previous problem for $f(x) = x^2 - 1$, $a = 0$, and $x_2 = 0.2$. Choose a formulation that will give you a positive answer for the slope. The (positive) slope of the curve at $a = 0$ is approximately… $\answer {0.2}$
Zoom in on the curve $f(x) = x^2 - 1$ near $x=0$ again. By looking at the graph, what is your best guess for the actual slope of the curve at zero?
impossible to say zero one infinity