$\newenvironment {prompt}{}{} \newcommand {\ungraded }{} \newcommand {\todo }{} \newcommand {\oiint }{{\large \bigcirc }\kern -1.56em\iint } \newcommand {\mooculus }{\textsf {\textbf {MOOC}\textnormal {\textsf {ULUS}}}} \newcommand {\npnoround }{\nprounddigits {-1}} \newcommand {\npnoroundexp }{\nproundexpdigits {-1}} \newcommand {\npunitcommand }{\ensuremath {\mathrm {#1}}} \newcommand {\RR }{\mathbb R} \newcommand {\R }{\mathbb R} \newcommand {\N }{\mathbb N} \newcommand {\Z }{\mathbb Z} \newcommand {\sagemath }{\textsf {SageMath}} \newcommand {\d }{\mathop {}\!d} \newcommand {\l }{\ell } \newcommand {\ddx }{\frac {d}{\d x}} \newcommand {\zeroOverZero }{\ensuremath {\boldsymbol {\tfrac {0}{0}}}} \newcommand {\inftyOverInfty }{\ensuremath {\boldsymbol {\tfrac {\infty }{\infty }}}} \newcommand {\zeroOverInfty }{\ensuremath {\boldsymbol {\tfrac {0}{\infty }}}} \newcommand {\zeroTimesInfty }{\ensuremath {\small \boldsymbol {0\cdot \infty }}} \newcommand {\inftyMinusInfty }{\ensuremath {\small \boldsymbol {\infty -\infty }}} \newcommand {\oneToInfty }{\ensuremath {\boldsymbol {1^\infty }}} \newcommand {\zeroToZero }{\ensuremath {\boldsymbol {0^0}}} \newcommand {\inftyToZero }{\ensuremath {\boldsymbol {\infty ^0}}} \newcommand {\numOverZero }{\ensuremath {\boldsymbol {\tfrac {\#}{0}}}} \newcommand {\dfn }{\textbf } \newcommand {\unit }{\mathop {}\!\mathrm } \newcommand {\eval }{\bigg [ #1 \bigg ]} \newcommand {\seq }{\left ( #1 \right )} \newcommand {\epsilon }{\varepsilon } \newcommand {\phi }{\varphi } \newcommand {\iff }{\Leftrightarrow } \DeclareMathOperator {\arccot }{arccot} \DeclareMathOperator {\arcsec }{arcsec} \DeclareMathOperator {\arccsc }{arccsc} \DeclareMathOperator {\si }{Si} \DeclareMathOperator {\scal }{scal} \DeclareMathOperator {\sign }{sign} \newcommand {\arrowvec }{{\overset {\rightharpoonup }{#1}}} \newcommand {\vec }{{\overset {\boldsymbol {\rightharpoonup }}{\mathbf {#1}}}\hspace {0in}} \newcommand {\point }{\left (#1\right )} \newcommand {\pt }{\mathbf {#1}} \newcommand {\Lim }{\lim _{\point {#1} \to \point {#2}}} \DeclareMathOperator {\proj }{\mathbf {proj}} \newcommand {\veci }{{\boldsymbol {\hat {\imath }}}} \newcommand {\vecj }{{\boldsymbol {\hat {\jmath }}}} \newcommand {\veck }{{\boldsymbol {\hat {k}}}} \newcommand {\vecl }{\vec {\boldsymbol {\l }}} \newcommand {\uvec }{\mathbf {\hat {#1}}} \newcommand {\utan }{\mathbf {\hat {t}}} \newcommand {\unormal }{\mathbf {\hat {n}}} \newcommand {\ubinormal }{\mathbf {\hat {b}}} \newcommand {\dotp }{\bullet } \newcommand {\cross }{\boldsymbol \times } \newcommand {\grad }{\boldsymbol \nabla } \newcommand {\divergence }{\grad \dotp } \newcommand {\curl }{\grad \cross } \newcommand {\lto }{\mathop {\longrightarrow \,}\limits } \newcommand {\bar }{\overline } \newcommand {\surfaceColor }{violet} \newcommand {\surfaceColorTwo }{redyellow} \newcommand {\sliceColor }{greenyellow} \newcommand {\vector }{\left \langle #1\right \rangle } \newcommand {\sectionOutcomes }{} \newcommand {\HyperFirstAtBeginDocument }{\AtBeginDocument }$

A planimeter computes the area of a region by tracing the boundary.

Green’s Theorem may seem rather abstract, but as we will see, it is a fantastic tool for computing the areas of arbitrary bounded regions. In particular, Green’s Theorem is a theoretical planimeter. A planimeter is a “device” used for measuring the area of a region. Ideally, one would “trace” the border of a region, and the planimeter would tell you the area of the region.

### How is Green’s Theorem a planimeter?

Recall Green’s Theorem:

Given a vector field $\vec {F}:\R ^2\to \R ^2$, if $\curl \vec {F} = 1$, then the left-hand side of the conclusion of Green’s Theorem gives the area of the region $R$:

So now the question becomes, which vector fields have $\curl \vec {F} = 1$? Here are three basic candidates:

• $\vec {F}(x,y) = \vector {0,x}$
• $\vec {F}(x,y) = \vector {-y,0}$
• $\vec {F}(x,y) = \vector {-y/2,x/2}$
The key idea that connects the three vector fields above is:
Their curl is $1$. They are conservative fields. They are gradient fields. When used in combination with Green’s Theorem, they help compute area.

Once we have a vector field whose curl is $1$, we may then apply Green’s Theorem to use a line integral to compute the area.

### Computing areas with Green’s Theorem

Now let’s do some examples.

Finally, what do you do if you have a very strangely shaped curve? You approximate it with a polygonal curve. Check out next example.

Green’s Theorem gives a fairly easy method for computing any the area of any polygonal region. Any region with a “smooth” border can be approximated by a polygonal region. The upshot? Green’s Theorem is a powerful tool for computing area.

### The shoelace algorithm

Green’s Theorem can also be used to derive a simple (yet powerful!) algorithm (often called the “shoelace” algorithm) for computing areas. Here’s the idea: Suppose you have a two-dimensional polygon, where the vertices are identified by their $(x,y)$-coordinates:

Here we see a polygon with $n$ vertices, and the “dashed-line” means that there could be more to this polygon than “meets the eye.” So to compute the area, here is a neat trick. Write all of the coordinates in a column, writing the starting coordinate twice, both at the beginning and at the end:

Now multiply entries of the columns diagonally down from the left to the right and add them together

to obtain: Now, multiply entries of the columns diagonally down from the left to the right and subtract them from our previous sum to obtain:

The area of the polygon in question will be: The algorithm is called the “shoelace” algorithm because of the crisscrossing pattern you see above.

Compute the area of the following polygon: The area is $\answer {47}$ square units.

#### Why does the shoelace algorithm work?

Now we are going explain why the shoelace algorithm works via Green’s Theorem. The restrained young mathematician may protest that we are using a “crane to crush a fly,” but whatever. We like Green’s Theorem.

A student is working with a pentagon: and using the shoelace algorithm: computes the area of the pentagon as:

So the student concludes that the area is Is this correct?

Yes No