We see a collection of polar curves.

1 Lines

1.1 Horizontal lines

\[ \graph [polar]{a=1,r=a \csc (\theta )} \]

1.2 Vertical lines

\[ \graph [polar]{a=1,r=a \sec (\theta )} \]

1.3 Not through the origin

\[ \graph [polar]{b=1,m=1,r=\frac {b}{\sin (\theta )-m \cos (\theta )}} \]

2 Circles

2.1 Centered on the x-axis

\[ \graph [polar]{a=1, r=a \cos (\theta )} \]

2.2 Centered on the y-axis

\[ \graph [polar]{a=1,r=a \sin (\theta )} \]

2.3 Centered at the origin

\[ \graph [polar]{a=1,r=a} \]

3 Archimedean spiral

\[ \graph [polar]{r=\theta } \]

4 Limaçons

4.1 With inner loop

\[ \graph [xmin=-5,xmax=5,ymin=-2,ymax=2,polar]{a=1,b=2,r=a+b \cos (\theta )} \]
\[ \graph [xmin=-5,xmax=5,ymin=-.5,ymax=3.5,polar]{a=1,b=2,r=a+b \sin (\theta )} \]

4.2 Cardioid

\[ \graph [xmin=-5,xmax=5,ymin=-2,ymax=2,polar]{a=1,b=a,r=a+b \cos (\theta )} \]
\[ \graph [xmin=-5,xmax=5,ymin=-1,ymax=2.5,polar]{a=1,b=a,r=a+b \sin (\theta )} \]

4.3 Dimpled

\[ \graph [polar]{a=3,b=2,r=a+b \cos (\theta )} \]
\[ \graph [xmin=-10,xmax=10,ymin=-2,ymax=6,polar]{a=3,b=2,r=a+b \sin (\theta )} \]

4.4 Convex

\[ \graph [xmin=-20,xmax=20,ymin=-7.5,ymax=7.5,polar]{a=5,b=2,r=a+b \cos (\theta )} \]
\[ \graph [xmin=-20,xmax=20,ymin=-5.5,ymax=10,polar]{a=5,b=2,r=a+b \sin (\theta )} \]

5 Rose curves

\[ \graph [xmin=-5,xmax=5,ymin=-2,ymax=2,polar]{r=\cos (2\theta )} \]
\[ \graph [xmin=-5,xmax=5,ymin=-2,ymax=2,polar]{r=\sin (2\theta )} \]
\[ \graph [xmin=-5,xmax=5,ymin=-2,ymax=2,polar]{r=\cos (3\theta )} \]
\[ \graph [xmin=-5,xmax=5,ymin=-2,ymax=2,polar]{r=\sin (3\theta )} \]
2025-01-06 20:20:34