Linear Systems
 
Overview on linear systems
0.00%
Row Reduction
0.00%
Plan for Row Reduction
0.00%
Notation for Row Operations
0.00%
Algorithm for Row Reduction
0.00%
Matrices
0.00%
Matrix Operations and Matrix Algebra
0.00%
Matrix Equations
0.00%
The Superposition Principle
0.00%
Elementary Matrices
0.00%
Vector Spaces and Linear Transformations
 
Vector Spaces
0.00%
The vector space ℝn
0.00%
Definition of a vector space
0.00%
Subspaces
0.00%
Linear combinations and linear independence
0.00%
Constructing and Describing Vector Spaces and Subspaces
0.00%
Spanning sets, row spaces, and column spaces
0.00%
Nullspaces
0.00%
Range
0.00%
Bases and dimension
0.00%
Coordinate systems
0.00%
Vector spaces over ℂ
0.00%
Linear Transformations
0.00%
Definition
0.00%
Matrix representations of transformations
0.00%
Change of basis
0.00%
Vector spaces of linear transformations
0.00%
Eigenvalues and Eigenvectors
 
The Determinant
0.00%
Cofactor expansion
0.00%
Combinatorial definition
0.00%
Properties of the determinant
0.00%
Eigenvalues and Eigenvectors
0.00%
Definition
0.00%
Eigenspaces
0.00%
The characteristic polynomial
0.00%
Direct sum decomposition
0.00%
Properties of Eigenvalues and Eigenvectors
0.00%
Similarity and diagonalization
0.00%
Complex eigenvalues and eigenvectors
0.00%
Geometric versus algebraic multiplicity
0.00%
Shur’s Theorem
0.00%
Normal matrices
0.00%
Generalized eigenvectors
0.00%
Inner Product Spaces
 
Inner Products on ℝn
0.00%
The dot product in ℝn
0.00%
Symmetric bilinear pairings on ℝn
0.00%
Orthogonal vectors and subspaces in ℝn
0.00%
Orthonormal vectors and orthogonal matrices
0.00%
Projections and Least-squares Approximations
0.00%
Projection onto 1-dimensional subspaces
0.00%
Gram-Schmidt orthogonalization
0.00%
Least-squares approximations
0.00%
Least-squares solutions and the Fundamental Subspaces theorem
0.00%
Applications of least-squares solutions
0.00%
Projection onto a subspace
0.00%
Polynomial data fitting
0.00%
Complex inner product spaces
0.00%
The complex scalar product in ℂn
0.00%
Conjugate-symmetric sesquilinear pairings on ℂn, and their representation
0.00%
Unitary matrices
0.00%
Singular Values
 
Singular value decomposition
0.00%

Overall
0%

https://ximera.osu.edu/certificate/H4sIAAAAAAACAyXMzQrCMBAE4FcJOdtmm9jV5uZJBI%2F14i1tFw22DeQHCuK7m%2BhhGRi%2B2TdfzUJc83OiENktkOc7nkpovtmFvKldSDVNSZQ2COyOzREAx25AQAQl1dRIpfJsMrG8kiCxAlmB6mGvW9RtVx8U3rMYXfKhGDHblYw384MGb0SkLQ7OvTKJNs5F9E8bGLvku%2F4oY6c%2FziaMzmcDny87GSVrvwAAAA%3D%3D/Sbqdoh%2FxJG%2FO%2BS2plaWWeEsOlJk%2FVqYxL1IiZvpKwoxAuH5%2FPuuL%2B9NxyCrhrMvIZDqak%2FTUc23XiaM4NOs%2B9SYH8TNOpC7CbgCWK%2BYYD1u841MZ0DofOpqhyPEtdLF%2B%2Bi%2FDP1rsrP%2BFEWPWz3GtmzplIcVZux7EJrMunZ8Om0xqeaoxMIw9lysvzSUfj5QhVChJsB%2FAQyEj8U2MWRtG1u%2B2Tp84PKBAn3Do7CjRRSco%2BTljBsKGZaPxU7vgD1W6NZRgyKoVio0cNjV8NDAkUJ4UyCzze5n%2FpTxS58Thd5BxOO0NihetgoCwocEjw8yUdjO2f1u4PZoNyXFTtmhODw%3D%3D