series

Can we get a series for any rational function?

\[ R(x) = \frac {5-x}{(x+3)(x-2)} \]

Can we get a series for this centered at \(1\)?

If we can get a series centered at \(1\), then the interval of convergence could only go out to \(2\). That’s a radius of \(1\). The interval of convergence would be \((0,2)\).

Our first hurdle is that we know how to get series for expressions that look like \(\frac {1}{1-something}\). Therefore, we need to split the formula for \(R(x)\) to look like

\[ \frac {A}{x+3} + \frac {B}{x-2} + \text { stuff } \]

If we separate out the parts like \(\frac {A}{x+3}\) and \(\frac {B}{x-2}\), then no singularities should be left. That suggests that the remaining stuff is a polynomial.

We can work backwards. We’ll start by just combining the two fraction templates and see how close we get.

\[ \frac {A}{x+3} + \frac {B}{x-2} = \frac {A(x-2) + B(x+3)}{(x+3)(x-2)} = \frac {(A+B)x + (3B-2A)}{(x+3)(x-2)} \]

This will work provide

  • \(A+B = -1\)
  • \(3B-2A = 5\)

The first equation tells us that \(A = -1 - B\). Substituting that into the second equation gives us

\begin{align*} 3B-2A & = 5 \\ 3B-2(-1 -B) & = 5 \\ 2 + 5B & = 5 \\ 5B & = 3 \\ B & = \frac {3}{5} \end{align*}

\(A = -1 - \frac {3}{5} = \frac {-8}{5}\)

\[ \frac {5-x}{(x+3)(x-2)} = \frac {-8}{5} \cdot \frac {1}{x+3} + \frac {3}{5} \cdot \frac {1}{x-2} \]

Now, we need to rewrite the fractions in the form \(\frac {1}{1 - something}\) where \(something(1) = 0\).

\[ \frac {1}{x+3} = \frac {1}{3+x} = \frac {1}{3+(x-1)+1} = \frac {1}{4+(x-1)} = \frac {1}{4-(-(x-1))} = \frac {1}{4} \cdot \frac {1}{1-\left ( \frac {-(x-1)}{4} \right ) } \]
\[ \frac {1}{x-2} = \frac {1}{-2 + (x-1)+1} = \frac {1}{-1 + (x-1)} = \frac {-1}{1 - (x-1)} \]

We can substitute these into the formula.

\[ \frac {5-x}{(x+3)(x-2)} = \frac {-8}{5} \cdot \frac {1}{4} \cdot \frac {1}{1+\left ( \frac {x-1}{4} \right ) } + \frac {3}{5} \cdot \frac {-1}{1 - (x-1)} \]

And, our series

\[ \frac {5-x}{(x+3)(x-2)} = \frac {-8}{5} \cdot \frac {1}{4} \cdot \sum _{n=0}^{\infty } \left ( \frac {-(x-1)}{4} \right )^n + \frac {3}{5} \cdot (-1) \cdot \sum _{n=0}^{\infty } (x-1)^n \]
\[ \frac {5-x}{(x+3)(x-2)} = \frac {-2}{5} \sum _{n=0}^{\infty } \left ( \frac {-(x-1)}{4} \right )^n + \frac {-3}{5} \sum _{n=0}^{\infty } (x-1)^n \]
\[ \frac {5-x}{(x+3)(x-2)} = \sum _{n=0}^{\infty } \frac {-2}{5} (-1)^n \left ( \frac {(x-1)}{4} \right )^n + \sum _{n=0}^{\infty } \frac {-3}{5} (x-1)^n \]
\[ \frac {5-x}{(x+3)(x-2)} = \sum _{n=0}^{\infty } \left ( \frac {-2}{5} (-1)^n \left ( \frac {(x-1)}{4} \right )^n + \frac {-3}{5} (x-1)^n \right ) \]

Not a Geometric series, but a sum of two geometric series.

ooooo-=-=-=-ooOoo-=-=-=-ooooo
more examples can be found by following this link
More Examples of Geometric Series

2025-05-17 23:25:45