$\newenvironment {prompt}{}{} \newcommand {\ungraded }[0]{} \newcommand {\bigmath }[1]{\displaystyle #1} \newcommand {\choicebreak }[0]{} \newcommand {\type }[0]{} \newcommand {\notes }[0]{} \newcommand {\keywords }[0]{} \newcommand {\offline }[0]{} \newcommand {\comments }[0]{\begin {feedback}} \newcommand {\multiplechoice }[0]{\begin {multipleChoice}} \newcommand {\HyperFirstAtBeginDocument }[0]{\AtBeginDocument }$

Exercises relating to Taylor series and their computation.

Use the Maclaurin series for $\sin x$ to give a complete formula for the Maclaurin series for $x \sin x^2$:
Use the Maclaurin series for $e^x$ and $e^{-x}$ to give a complete formula for the Maclaurin series for $\cosh x$:
Your formula should account for the fact that there are only even powers of $x$.
Compute the Taylor series of the function $f(x) = \ln x$ centered at the point $x_0 = 2$.
Compute the Maclaurin series of the function identified below.

### Sample Quiz Questions

Compute the first $4$ nonzero terms in the Taylor series at $x=0$ of the function

$\displaystyle 1 + 3x^{2} + \frac {5}{2}x^{4} + \frac {7}{6}x^{6}$ $\displaystyle - 1 - 3x^{2} + \frac {5}{2}x^{4} + \frac {7}{6}x^{6}$ $\displaystyle 1 - 6x^{2} - \frac {5}{4}x^{4} + \frac {7}{6}x^{6}$ $\displaystyle - 1 - 6x^{2} + \frac {5}{4}x^{4} + \frac {7}{6}x^{6}$ $\displaystyle 2 + 3x^{2} + \frac {5}{4}x^{4} + \frac {7}{6}x^{6}$ $\displaystyle 2 - 3x^{2} - \frac {5}{4}x^{4} + \frac {7}{6}x^{6}$

Compute the first $4$ nonzero terms in the Taylor series at $x=0$ of the function

$\displaystyle - \frac {1}{6}x^{3} - \frac {1}{8}x^{4} - \frac {2}{15}x^{5} - \frac {1}{24}x^{6}$ $\displaystyle \frac {1}{6}x^{3} + \frac {1}{8}x^{4} - \frac {2}{15}x^{5} - \frac {1}{24}x^{6}$ $\displaystyle - \frac {1}{6}x^{3} + \frac {1}{4}x^{4} + \frac {1}{15}x^{5} - \frac {1}{24}x^{6}$ $\displaystyle \frac {1}{6}x^{3} + \frac {1}{4}x^{4} - \frac {1}{15}x^{5} - \frac {1}{24}x^{6}$ $\displaystyle - \frac {1}{3}x^{3} - \frac {1}{8}x^{4} - \frac {1}{15}x^{5} - \frac {1}{24}x^{6}$ $\displaystyle - \frac {1}{3}x^{3} + \frac {1}{8}x^{4} + \frac {1}{15}x^{5} - \frac {1}{24}x^{6}$

### Sample Exam Questions

The first few nonzero terms of the Maclaurin series for $f(x) = \ln ( 1 + \sin x)$ are:

$\displaystyle 1 + \frac {1}{2} x - \frac {1}{8} x^2 + \frac {1}{24} x^3 + \cdots$ $\displaystyle 1 + \frac {1}{2} x - \frac {1}{8} x^2 - \frac {1}{48} x^3 + \cdots$ $\displaystyle x - \frac {1}{2} x^2 + \frac {1}{8} x^3 - \frac {1}{24} x^4 + \cdots$ $\displaystyle 1 + x + \frac {1}{2} x^2 + \frac {1}{3} x^3 + \frac {1}{6} x^4 \cdots$ $\displaystyle x - \frac {1}{2} x^2 + \frac {1}{6} x^3 - \frac {1}{12} x^4 + \cdots$ $\displaystyle 1 + x + \frac {1}{2} x^2 + \frac {1}{3} x^3 - \frac {1}{12} x^4 + \cdots$
(Hints will not be revealed until you choose your response.)

Find the Taylor polynomial of degree 2 for $f(x) = \sqrt {x+16}$ centered at $x=9$.

$\displaystyle 5 + \frac {4}{5} x + \frac {9}{250} x^2$ $\displaystyle 5 - \frac {3}{5} (x-5) + \frac {1}{125} (x-5)^2$ $\displaystyle 5 + \frac {1}{10} (x-9) - \frac {1}{1000} (x-9)^2$ $\displaystyle 5 + \frac {3}{5} (x-5) + \frac {8}{125} (x-5)^2$ $\displaystyle 5 + \frac {1}{5} (x-9) + \frac {16}{125} (x-9)^2$ none of these

Use the Taylor polynomial of degree $3$ for $f(x) = \ln (1+x)$ centered at $x_0 = 0$ to approximate the value of $\displaystyle \ln \left ( \frac {3}{2} \right )$.

$\displaystyle \frac {2}{3}$ $\displaystyle \frac {3}{2}$ $\displaystyle \frac {15}{4}$ $\displaystyle \frac {5}{12}$ $\displaystyle \frac {9}{24}$ $\displaystyle \frac {11}{24}$

Let $F(x)$ be the unique function that satisfies $F(0) = 0$, $F'(0) = 0$, and $F'(x) = \frac {1}{x} \sin x^3$ for all $x \neq 0$. Find the Taylor Series of $F(x)$ centered at $x_0 = 0$.

$\displaystyle \sum _{n=0}^\infty \frac {(-1)^n x^{6n+3}}{(2n+1)!}$ $\displaystyle \sum _{n=0}^\infty \frac {(-1)^n (6n+3) x^{6n+2}}{(2n+1)!}$ $\displaystyle \sum _{n=0}^\infty \frac {(-1)^n x^{6n+3}}{(6n+3)(2n+1)!}$ $\displaystyle \sum _{n=0}^\infty \frac {(-1)^n x^{6n+2}}{(2n+1)!}$ $\displaystyle \sum _{n=0}^\infty \frac {(-1)^n (6n+2) x^{6n+2}}{(2n+1)!}$ $\displaystyle \sum _{n=0}^\infty \frac {(-1)^n x^{2n+3}}{(6n+3)(2n+1)!}$