$\newenvironment {prompt}{}{} \newcommand {\ungraded }{} \newcommand {\bigmath }{\displaystyle #1} \newcommand {\choicebreak }{} \newcommand {\type }{} \newcommand {\notes }{} \newcommand {\keywords }{} \newcommand {\offline }{} \newcommand {\comments }{\begin {feedback}} \newcommand {\multiplechoice }{\begin {multipleChoice}} \newcommand {\HyperFirstAtBeginDocument }{\AtBeginDocument }$

Various exercises relating to improper integrals.

Evaluate the improper integral: $\displaystyle \int _0^\infty e^{5-2x}\ dx = \answer {(e^5)/2}.$
Evaluate the given improper integral: $\displaystyle \int _{-\infty }^\infty \frac {1}{x^2+9}\ dx = \answer {\pi /3}.$
Evaluate the integral: This integral is not improperimproper because of the behavior of the integrand near $x = 0$.
Evaluate the given improper integral. $\displaystyle \int _{3}^\infty \frac {1}{x^2-4}\ dx = \answer {\frac {\ln 5}{4}}.$
Use the Direct Comparison Test or the Limit Comparison Test to determine whether the integral converges or diverges: $\displaystyle \int _{10}^\infty \frac {3}{\sqrt {3x^2+2x-5}} \ dx.$ Answer: the integral convergesdiverges by directlimit comparison with the function $\displaystyle \frac {1}{x^{\answer {1}}}.$
Use the Direct Comparison Test or the Limit Comparison Test to determine whether the integral converges or diverges: $\displaystyle \int _{2}^\infty \frac {2}{\sqrt {7x^3-x}} \ dx.$ Answer: the integral convergesdiverges by directlimit comparison with the function $\displaystyle \frac {1}{x^{\answer {3/2}}}$ (select the largest exponent for the denominator which makes the statement true).
Use the Direct Comparison Test or the Limit Comparison Test to determine whether the integral converges or diverges: $\displaystyle \int _{1}^\infty e^{-x} \ln x \ dx.$ Answer: the integral convergesdiverges by direct comparison with the function
$e^{-x}$ $x e^{-x}$ $e^{-x}/x$
Use the Direct Comparison Test or the Limit Comparison Test to determine whether the integral converges or diverges: $\displaystyle \int _{1}^\infty e^{-x^2 + 3x + 1} \ dx.$ Answer: the integral convergesdiverges by direct comparison with the function
$e^{-x^2}$ $e^{-x}$ $e^{3x+1}$
Use the Direct Comparison Test or the Limit Comparison Test to determine whether the integral converges or diverges: $\displaystyle \int _{1}^\infty \frac {x}{x^2+\cos x} \ dx.$ Answer: the integral convergesdiverges by directlimit comparison with the function
$1/x$ $x/\cos x$ $1/(x^2+\cos x)$
Use the Direct or Limit Comparison Test to determine whether the integral converges or diverges: Answer: The integral convergesdiverges by directlimit comparison with the function
$\displaystyle \frac {(\ln x)^2}{x^3}$ $\displaystyle \frac {(\ln x)^2}{x^2}$ $\displaystyle \frac {(\ln x)^2}{x}$ $\displaystyle \frac {1}{x^3}$ $\displaystyle \frac {1}{x^2}$
Use the Direct or Limit Comparison Test to determine whether the integral converges or diverges: Answer: The integral convergesdiverges by direct comparison with the function
$\displaystyle \frac {(\ln x)^2}{x}$ $\displaystyle \frac {(\ln x)^2}{\sqrt {x}}$ $\displaystyle \frac {(\ln x)^2}{e^{-1/x}}$ $\displaystyle \frac {1}{x}$ $\displaystyle \frac {1}{\sqrt {x}}$ $\displaystyle \frac {1}{e^{-1/x}}$

### Sample Quiz Questions

Which of the following improper integrals is convergent? Show how you used comparison tests to justify your answer.

only $\mathrm {I}$ converges only $\mathrm {II}$ converges only $\mathrm {III}$ converges $\mathrm {I}$ and $\mathrm {II}$ converge $\mathrm {II}$ and $\mathrm {III}$ converge $\mathrm {I}$ and $\mathrm {III}$ converge

Which of the following improper integrals is convergent? Show how you used comparison tests to justify your answer.

only $\mathrm {I}$ converges only $\mathrm {II}$ converges only $\mathrm {III}$ converges $\mathrm {I}$ and $\mathrm {II}$ converge $\mathrm {II}$ and $\mathrm {III}$ converge $\mathrm {I}$ and $\mathrm {III}$ converge

### Sample Exam Questions

Only one of the following four improper integrals diverges. Choose that improper integral and justify why it diverges. (You need NOT justify why the other integrals converge.)

$\displaystyle \int ^{\infty }_{2} \frac {\arctan x}{1+x^3} dx$ $\displaystyle \int ^{\infty }_{2} \frac {1}{\sqrt {x^4+x^2}} dx$ $\displaystyle \int ^{\infty }_{2} \frac {1+\sin x}{x^2} dx$ $\displaystyle \int _{2}^{\infty } \frac {1}{\sqrt {x^2-1}} dx$