We determine if a sequence converges or diverges.

We think of a sequence as an ordered list of numbers, . We can also start our sequence with instead of

Some examples of sequences are \begin{align*} i) \;\; & \{a_n\}_{1}^\infty = \{n^2\} = 1^2, 2^2, 3^2, 4^2, \dots = 1, 4, 9, 16, \dots \\ ii) \;\; & \{a_n\}_{1}^\infty = \{(-1)^n\} = (-1)^1, (-1)^2, (-1)^3, \dots = -1, 1, -1, 1, \dots \\ iii) \;\; & \{a_n\}_{1}^\infty = \left \{\frac{1}{2^n}\right \} = \frac{1}{2^1}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \dots = \frac 12, \frac 14, \frac 18, \frac{1}{16}, \dots \\ iv) \;\; & \{a_n\}_{1}^\infty = \left \{\frac{n}{n+1}\right \} = \frac{1}{1+1}, \frac{2}{2+1}, \frac{3}{3+1}, \frac{4}{4+1}, \dots = \frac 12, \frac 23, \frac 34, \frac 45, \dots \end{align*}

The question we will have about a given sequence is if it has a limit.

1 Problems

You can type DNE or infinity into the answer box as needed.

(problem 1) Find the limit of the sequence (if it exists), and then state whether the sequence converges or diverges.
The sequence convergesdiverges
(problem 2) Find the limit of the sequence (if it exists), and then state whether the sequence converges or diverges.
The sequence convergesdiverges
(problem 3) Find the limit of the sequence (if it exists), and then state whether the sequence converges or diverges.
The sequence convergesdiverges
(problem 4) Find the limit of the sequence (if it exists), and then state whether the sequence converges or diverges.
The sequence convergesdiverges
(problem 5) Find the limit of the sequence (if it exists), and then state whether the sequence converges or diverges.
The sequence convergesdiverges
(problem 6) Find the limit of the sequence (if it exists), and then state whether the sequence converges or diverges.
The sequence convergesdiverges
(problem 7) Find the limit of the sequence (if it exists), and then state whether the sequence converges or diverges.
The sequence convergesdiverges
(problem 8) Find the limit of the sequence (if it exists), and then state whether the sequence converges or diverges.
The sequence convergesdiverges
(problem 9) Find the limit of the sequence (if it exists), and then state whether the sequence converges or diverges.
The sequence convergesdiverges
(problem 10) Find the limit of the sequence (if it exists), and then state whether the sequence converges or diverges.
The sequence convergesdiverges
(problem 11) Determine whether the sequence is increasing, decreasing or neither.
a) increasing decreasing neither
b) increasing decreasing neither
c) increasing decreasing neither
d) increasing decreasing neither
e) increasing decreasing neither
2024-09-27 13:57:39