We will integrate rational functions using partial fraction decompositions.

Partial Fractions

In this section we will learn an important method for integrating rational functions. Recall that a rational function is a ratio of polynomials. The key background skill is the ability to factor polynomials. We will look at three examples that cover the scenarios that we will encounter in our integrals.

First, consider the cubic polynomial . We can factor out an and then factor again using the difference of two perfect squares:

This is a complete factorization consisting of three different linear factors, and . We can say that the original cubic polynomial factored into distinct linear factors.

Second, consider the cubic polynomial . This polynomial factors as but this is not a complete factorization. The quadratic, , can be factored since it is a perfect square. The complete factorization is In this case, our original cubic polynomial factored into a linear factor and a repeated linear factor.

Last, consider the cubic polynomial . This polynomial factors as . The quadratic does not factor (unless you are willing to use imaginary numbers) and is called an irreducible quadratic polynomial. So we say that the original cubic polynomial factored into a linear factor and an irreducible quadratic factor.

Now we will investigate the three decomposition forms we will encounter in our integrals.

  • Distinct Linear Factors
    A rational function whose denominator factors into a product of distinct linear factors can be decomposed into a sum of rational functions whose numerators are constants and whose denominators are the factors of the denominator. For example, where and are constants.
  • Repeated Linear Factor
    The repeated linear factor will contribute a number of terms to the partial fraction decomposition equal to the multiplicity of the factor. Each of these terms will have a constant in the numerator and a distinct power of the repeated factor in the denominator. For example, where and are constants. Note how the repeated linear factor contributes two terms whose denominators are and and whose numerators were constants.
  • Irreducible Quadratic Factor
    An irreducible quadratic factor in the denominator will contribute one term to the decomposition whose numerator is a linear polynomial and whose denominator is the irreducible quadratic factor. For example, where and are constants.

Before we move on to integrating the special rational functions seen in the above decompositions, we will look at one more example consisting of all three of the ideas mentioned above. Find the partial fraction decomposition of The denominator is already in a completely factored form. This form consists of a linear factor , a repeated linear factor and an irreducible quadratic . The partial fraction decomposition will consist of one term for the factor and three terms for the factor . Each of these terms will have a constant in the numerator. The decomposition will also contain one term for the irreducible quadratic, and this term will have a linear polynomial in the numerator and the irreducible quadratic in the denominator. The form of the decomposition is: where and are constants.

Special Integrals

The point of a partial fraction decomposition is to replace a complicated rational function by a sum of simpler ones which we can integrate. We will now look at some of these simpler forms and learn how to integrate them.

(problem 1) Compute the indefinite integral
(problem 2) Compute the indefinite integral
(problem 3)

Compute the indefinite integral

(problem 4)

Compute the indefinite integral

We are now ready to tackle more general scenarios.

Distinct Linear Factors

Here is a detailed, lecture style video on distinct linear factors:
_
(problem 5a)

Compute

The partial fraction decomposition has the form

The answer has the form

The coefficients are

(problem 5b)

Compute

The partial fraction decomposition has the form

The answer has the form

The coefficients are

Repeated Linear Factors

Here is a detailed, lecture style video on repeated linear factors:
_
(problem 6a)

Compute

The partial fraction decomposition has the form

The answer has the form

The coefficients are

(problem 6b)

Compute

The partial fraction decomposition has the form

The answer has the form

The coefficients are

(problem 6c)

Compute

The partial fraction decomposition has the form

The answer has the form

The coefficients are

Irreducible Quadratic Factors

Here is a detailed, lecture style video on irreducible quadratic factors:
_
(problem 7a)

Compute

The partial fraction decomposition has the form

The answer has the form

The coefficients are

(problem 7b)

Compute

The partial fraction decomposition has the form

The answer has the form

The coefficients are