$\newenvironment {prompt}{}{} \newcommand {\ungraded }{} \newcommand {\todo }{} \newcommand {\mooculus }{\textsf {\textbf {MOOC}\textnormal {\textsf {ULUS}}}} \newcommand {\npnoround }{\nprounddigits {-1}} \newcommand {\npnoroundexp }{\nproundexpdigits {-1}} \newcommand {\npunitcommand }{\ensuremath {\mathrm {#1}}} \newcommand {\tkzTabSlope }{\foreach \x /\y /\z in {#1}{\node [left = 3pt] at (Z\x 1) {\scriptsize \y }; \node [right = 3pt] at (Z\x 1) {\scriptsize \z }; }} \newcommand {\RR }{\mathbb R} \newcommand {\R }{\mathbb R} \newcommand {\N }{\mathbb N} \newcommand {\Z }{\mathbb Z} \newcommand {\sagemath }{\textsf {SageMath}} \newcommand {\d }{\mathop {}\!d} \newcommand {\l }{\ell } \newcommand {\ddx }{\frac {d}{\d x}} \newcommand {\ddt }{\frac {d}{\d t}} \newcommand {\zeroOverZero }{\ensuremath {\boldsymbol {\tfrac {0}{0}}}} \newcommand {\inftyOverInfty }{\ensuremath {\boldsymbol {\tfrac {\infty }{\infty }}}} \newcommand {\zeroOverInfty }{\ensuremath {\boldsymbol {\tfrac {0}{\infty }}}} \newcommand {\zeroTimesInfty }{\ensuremath {\small \boldsymbol {0\cdot \infty }}} \newcommand {\inftyMinusInfty }{\ensuremath {\small \boldsymbol {\infty -\infty }}} \newcommand {\oneToInfty }{\ensuremath {\boldsymbol {1^\infty }}} \newcommand {\zeroToZero }{\ensuremath {\boldsymbol {0^0}}} \newcommand {\inftyToZero }{\ensuremath {\boldsymbol {\infty ^0}}} \newcommand {\numOverZero }{\ensuremath {\boldsymbol {\tfrac {\#}{0}}}} \newcommand {\dfn }{\textbf } \newcommand {\unit }{\mathop {}\!\mathrm } \newcommand {\eval }{\bigg [ #1 \bigg ]} \newcommand {\seq }{\left ( #1 \right )} \newcommand {\epsilon }{\varepsilon } \newcommand {\phi }{\varphi } \newcommand {\iff }{\Leftrightarrow } \DeclareMathOperator {\arccot }{arccot} \DeclareMathOperator {\arcsec }{arcsec} \DeclareMathOperator {\arccsc }{arccsc} \DeclareMathOperator {\si }{Si} \DeclareMathOperator {\proj }{\vec {proj}} \DeclareMathOperator {\scal }{scal} \DeclareMathOperator {\sign }{sign} \newcommand {\arrowvec }{\overrightarrow } \newcommand {\vec }{\mathbf } \newcommand {\veci }{{\boldsymbol {\hat {\imath }}}} \newcommand {\vecj }{{\boldsymbol {\hat {\jmath }}}} \newcommand {\veck }{{\boldsymbol {\hat {k}}}} \newcommand {\vecl }{\boldsymbol {\l }} \newcommand {\uvec }{\mathbf {\hat {#1}}} \newcommand {\utan }{\mathbf {\hat {t}}} \newcommand {\unormal }{\mathbf {\hat {n}}} \newcommand {\ubinormal }{\mathbf {\hat {b}}} \newcommand {\dotp }{\bullet } \newcommand {\cross }{\boldsymbol \times } \newcommand {\grad }{\boldsymbol \nabla } \newcommand {\divergence }{\grad \dotp } \newcommand {\curl }{\grad \cross } \newcommand {\lto }{\mathop {\longrightarrow \,}\limits } \newcommand {\bar }{\overline } \newcommand {\surfaceColor }{violet} \newcommand {\surfaceColorTwo }{redyellow} \newcommand {\sliceColor }{greenyellow} \newcommand {\vector }{\left \langle #1\right \rangle } \newcommand {\sectionOutcomes }{} \newcommand {\HyperFirstAtBeginDocument }{\AtBeginDocument }$

We introduce limits.

### The basic idea

Consider the function graphed below. While $f(x)$ is undefined at $x=0$, we can still plot $f(x)$ at other values near $x = 0$.

Use the graph of $f$ above to answer the following question: What is $f(0)$?
$0$ $f(0)$ $1$ $f(0)$ is undefined it is impossible to say

Nevertheless, we can see that as $x$ approaches zero, $f(x)$ approaches one. From this setting we come to our definition of a limit.

Use the graph of $f$ above to finish the following statement: “A good guess is that …”
$\lim _{x\to 0}f(x) = 1$. $\lim _{x\to 1}f(x) = 0$. $\lim _{x\to 1}f(x) = f(1)$. $\lim _{x\to 0}f(x) = f(0)$.
Consider the following graph of $y=f(x)$ Use the graph to evaluate the following. Write DNE if the value does not exist.
(a)
$f(-2) \begin {prompt}=\answer {1}\end {prompt}$
(b)
$\lim _{x\to -2}f(x)\begin {prompt}=\answer {1}\end {prompt}$
(c)
$f(-1) \begin {prompt}=\answer {2}\end {prompt}$
(d)
$\lim _{x\to -1}f(x) \begin {prompt}=\answer {2}\end {prompt}$
(e)
$f(0) \begin {prompt}=\answer {-2}\end {prompt}$
(f)
$\lim _{x\to 0} f(x) \begin {prompt}=\answer {0}\end {prompt}$
(g)
$f(1) \begin {prompt}=\answer {DNE}\end {prompt}$
(h)
$\lim _{x\to 1} f(x) \begin {prompt}=\answer {-2}\end {prompt}$

### Limits might not exist

Limits might not exist. Let’s see how this happens.

Tables can be used to help guess limits, but one must be careful.

Consider $f(x) = \sin \left (\frac {\pi }{x}\right )$. Fill in the tables below (to three decimal places): What do the tables tell us about
$\lim _{x\to 0}\sin \left (\frac {\pi }{x}\right ) = 0$ $\lim _{x\to 0}\sin \left (\frac {\pi }{x}\right )=1$ $\lim _{x\to 0}\sin \left (\frac {\pi }{x}\right ) = -.866$ $\lim _{x\to 0}\sin \left (\frac {\pi }{x}\right ) = -.433$ it is unclear what the tables are telling us about the limit

### One-sided limits

While we have seen that $\lim _{x\to 2}\lfloor x\rfloor$ does not exist, more can still be said.

### When you put this all together

One-sided limits help us talk about limits.

Evaluate the expressions by referencing the graph below. Write DNE if the limit does not exist.
(a)
$\lim _{x\to 4} f(x) \begin {prompt}=\answer {8}\end {prompt}$
(b)
$\lim _{x\to -3} f(x)\begin {prompt}=\answer {6}\end {prompt}$
(c)
$\lim _{x\to 0} f(x) \begin {prompt}=\answer {DNE}\end {prompt}$
(d)
$\lim _{x\to 0^-} f(x) \begin {prompt}=\answer {-2}\end {prompt}$
(e)
$\lim _{x\to 0^+} f(x) \begin {prompt}=\answer {-1}\end {prompt}$
(f)
$f(-2) \begin {prompt}=\answer {8}\end {prompt}$
(g)
$\lim _{x\to 2^-} f(x) \begin {prompt}=\answer {7}\end {prompt}$
(h)
$\lim _{x\to -2^-} f(x) \begin {prompt}=\answer {6}\end {prompt}$
(i)
$\lim _{x\to 0} f(x+1) \begin {prompt}=\answer {3}\end {prompt}$
(j)
$f(0) \begin {prompt}=\answer {-3/2}\end {prompt}$
(k)
$\lim _{x\to 1^-} f(x-4) \begin {prompt}=\answer {6}\end {prompt}$
(l)
$\lim _{x\to 0^+} f(x-2) \begin {prompt}=\answer {2}\end {prompt}$