About this Project
0.00%
RRN-0010: A Brief Introduction to ℝn
0.00%
VEC-0010: Introduction to Vectors
0.00%
VEC-0020: Length of a Vector
0.00%
VEC-0030: Vector Arithmetic
0.00%
VEC-0035: Standard Unit Vectors in ℝn
0.00%
VEC-0040: Linear Combinations of Vectors
0.00%
VEC-0050: Dot Product and its Properties
0.00%
VEC-0060: Dot Product and the Angle Between Vectors
0.00%
VEC-0070: Orthogonal Projections
0.00%
RRN-0020: Parametric Equations of Lines
0.00%
RRN-0030: Planes in ℝ3
0.00%
SYS-0010: Introduction to Systems of Linear Equations
0.00%
SYS-0020: Augmented Matrix Notation and Elementary Row Operations
0.00%
SYS-0030: Gaussian Elimination and Rank
0.00%
MAT-0010: Addition and Scalar Multiplication of Matrices
0.00%
MAT-0020: Matrix Multiplication
0.00%
MAT-0023: Block Matrix Multiplication
0.00%
MAT-0025: Transpose of a Matrix
0.00%
MAT-0030: Linear Systems as Matrix and Linear Combination Equations
0.00%
VEC-0090: Span
0.00%
VEC-0100: Linear Independence
0.00%
SYS-0050: Homogeneous Linear Systems
0.00%
MAT-0050: The Inverse of a Matrix
0.00%
MAT-0060: Elementary Matrices
0.00%
VEC-0110: Linear Independence and Matrices
0.00%
VSP-0020: ℝn and Subspaces of ℝn
0.00%
VSP-0030: Introduction to Bases
0.00%
VSP-0035: Bases and Dimension
0.00%
VSP-0040: Subspaces of ℝn Associated with Matrices
0.00%
VSP-0050: Abstract Vector Spaces
0.00%
VSP-0060: Bases and Dimension for Abstract Vector Spaces
0.00%
LTR-0010: Introduction to Linear Transformations
0.00%
LTR-0020: Standard Matrix of a Linear Transformation from ℝn to ℝm
0.00%
LTR-0022: Linear Transformations of Abstract Vector Spaces
0.00%
LTR-0025: Linear Transformations and Bases
0.00%
LTR-0030: Composition and Inverses of Linear Transformations
0.00%
LTR-0035: Existence of the Inverse of a Linear Transformation
0.00%
LTR-0070: Geometric Transformations of the Plane
0.00%
LTR-0050: Image and Kernel of a Linear Transformation
0.00%
LTR-0060: Isomorphic Vector Spaces
0.00%
LTR-0080: Matrix of a Linear Transformation with Respect to Arbitrary Bases
0.00%
DET-0010: Definition of the Determinant – Expansion Along the First Row
0.00%
DET-0020: Definition of the Determinant – Expansion Along the First Column
0.00%
DET-0030: Elementary Row Operations and the Determinant
0.00%
DET-0040: Properties of the Determinant
0.00%
DET-0050: The Laplace Expansion Theorem
0.00%
DET-0060: Determinants and Inverses of Nonsingular Matrices
0.00%
VEC-0080: Cross Product and its Properties
0.00%
DET-0070: Determinants as Areas and Volumes
0.00%
EIG-0010: Describing Eigenvalues and Eigenvectors Algebraically and Geometrically
0.00%
EIG-0020: Finding Eigenvalues and Eigenvectors
0.00%
EIG-0040: Similar Matrices and Their Properties
0.00%
EIG-0050: Diagonalizable Matrices and Multiplicity
0.00%
Debugging Differential Equations
0.00%

Overall
0%

https://ximera.osu.edu/certificate/H4sIAAAAAAACA0XMPQvCMBAG4L8SMtsmTZPadnMQF6Egurhd06sG2gbyAYL4301wEA5euPe5e9MNVqQ9PUX0gdw8OrqjMUdPX2ZFB6X1scQpsrz1rNl3vJOq5iDrSatOjBrnVqh0NkHIrwQXquBVIcSVN71MU5eyau9JaBudz4YtwM5mQ3CH5YGjg1QGE5bcDU9jyXC8kB8gf%2BG1dUnwzxfMXvButwAAAA%3D%3D/fB1uNayyPwqDDSZlFVyH4GkhXxwxRuvRCd7xvyLn%2FsU6nsO04ehPqsBUT4y5hztu%2F6g%2BCmU1sjDc9EEn6U832BeWrCAR6%2FozMEt9FAKyFIXaTCMAzkgf%2FNeQY6eqVSedBgsEJbTP9A0MXpHAb4vvHI2DkX0WnIpnkaoYfFrHIbem7yEXjWyP83z8eyMsDszvyjcGgtNSO2YNbQ%2B83oj4JrDIb23whFUWHhK3Vqw%2F89g%2BLVU%2BilfDwC7WvaHMGlONTBqFsXDWxj2FoqCjtTb%2FOcO43r32iSlCsw308EAZfsnTDRtCeOQlp7orSXn86YDmFNV5q9rfhOCoRiWWbARg2w%3D%3D