About this Project
0.00%
RRN-0010: A Brief Introduction to ℝn
0.00%
VEC-0010: Introduction to Vectors
0.00%
VEC-0020: Length of a Vector
0.00%
VEC-0030: Vector Arithmetic
0.00%
VEC-0035: Standard Unit Vectors in ℝn
0.00%
VEC-0040: Linear Combinations of Vectors
0.00%
VEC-0050: Dot Product and its Properties
0.00%
VEC-0060: Dot Product and the Angle Between Vectors
0.00%
VEC-0070: Orthogonal Projections
0.00%
RRN-0020: Parametric Equations of Lines
0.00%
RRN-0030: Planes in ℝ3
0.00%
SYS-0010: Introduction to Systems of Linear Equations
0.00%
SYS-0020: Augmented Matrix Notation and Elementary Row Operations
0.00%
SYS-0030: Gaussian Elimination and Rank
0.00%
MAT-0010: Addition and Scalar Multiplication of Matrices
0.00%
MAT-0020: Matrix Multiplication
0.00%
MAT-0023: Block Matrix Multiplication
0.00%
MAT-0025: Transpose of a Matrix
0.00%
MAT-0030: Linear Systems as Matrix and Linear Combination Equations
0.00%
VEC-0090: Span
0.00%
VEC-0100: Linear Independence
0.00%
SYS-0050: Homogeneous Linear Systems
0.00%
MAT-0050: The Inverse of a Matrix
0.00%
MAT-0060: Elementary Matrices
0.00%
VEC-0110: Linear Independence and Matrices
0.00%
VSP-0020: ℝn and Subspaces of ℝn
0.00%
VSP-0030: Introduction to Bases
0.00%
VSP-0035: Bases and Dimension
0.00%
VSP-0040: Subspaces of ℝn Associated with Matrices
0.00%
VSP-0050: Abstract Vector Spaces
0.00%
VSP-0060: Bases and Dimension for Abstract Vector Spaces
0.00%
LTR-0010: Introduction to Linear Transformations
0.00%
LTR-0020: Standard Matrix of a Linear Transformation from ℝn to ℝm
0.00%
LTR-0022: Linear Transformations of Abstract Vector Spaces
0.00%
LTR-0025: Linear Transformations and Bases
0.00%
LTR-0030: Composition and Inverses of Linear Transformations
0.00%
LTR-0035: Existence of the Inverse of a Linear Transformation
0.00%
LTR-0070: Geometric Transformations of the Plane
0.00%
LTR-0050: Image and Kernel of a Linear Transformation
0.00%
LTR-0060: Isomorphic Vector Spaces
0.00%
LTR-0080: Matrix of a Linear Transformation with Respect to Arbitrary Bases
0.00%
DET-0010: Definition of the Determinant – Expansion Along the First Row
0.00%
DET-0020: Definition of the Determinant – Expansion Along the First Column
0.00%
DET-0030: Elementary Row Operations and the Determinant
0.00%
DET-0040: Properties of the Determinant
0.00%
DET-0050: The Laplace Expansion Theorem
0.00%
DET-0060: Determinants and Inverses of Nonsingular Matrices
0.00%
VEC-0080: Cross Product and its Properties
0.00%
DET-0070: Determinants as Areas and Volumes
0.00%
EIG-0010: Describing Eigenvalues and Eigenvectors Algebraically and Geometrically
0.00%
EIG-0020: Finding Eigenvalues and Eigenvectors
0.00%
EIG-0040: Similar Matrices and Their Properties
0.00%
EIG-0050: Diagonalizable Matrices and Multiplicity
0.00%
Debugging Differential Equations
0.00%

Overall
0%

https://ximera.osu.edu/certificate/H4sIAAAAAAACA0XMOwvCMBQF4L8SMtvm0YfebA7iIhREF7e0va2BtoE8QBD%2FuwkOTgfu%2Be55002vSBU9R%2FSB3D06uqMxh6Ivs6LTpfWxxDGyfPWshbqF%2FtBXez40epwqQAkCpvQ26pCnJJdNIWQh%2BU1I1XAloKxBPpIYbHQ%2BG7ZodjEbandcZuydTmUwYcld9zSWdKcr%2BQHyF36wLgn%2B%2BQKCffMutwAAAA%3D%3D/aeRp32q1HnSmuSLTccies358MFi2fHWAYnB7AgmfaYFxLqVxcHMRzjPYpV3PLwJe0y9igSyBUmK%2Bl3WalbjbYmcC1V93rRfq0%2FKgIrrMLRvPlSJt%2FmtnOApX7QLCccJrDS8Ilv6Sr5oMKWXLD4RgrSZI%2BWtpqJSkB8g3hqCu44oaWwD68POCKuYxd2PM9ZsDmnnq3QAkXQrY47JeAeP5sWUUpowAt2K%2BHzHtgtDFwbE%2FK05DQI9ZsjWuDbByH2aKtq61FjsdXjpSrNlAu%2F%2F%2BmhsSQV%2FO87BhS3xkzLS4%2FkMZfsfcIrJLJ1kbglnimywbC16NDBS0qvyJxMxECE%2F6ZA%3D%3D