We give more contexts to understand integrals.
Velocity and displacement, speed and distance
Some values include “direction” that is relative to some fixed point.
- is the velocity of an object at time . This represents the “change in position” at time .
- is the position of an object at time . This gives location with respect to the origin.
- is the displacement, the distance between the starting and finishing locations.
On the other hand speed and distance are values without “direction.”
- is the speed.
- is the distance traveled.
Change in the amount
We can apply the Fundamental Theorems of Calculus to a variety of problems where both accumulation and rate of change play important roles. For example, we can consider a tank that is being filled with fuel at some rate. Given the rate, we can ask what is the amount of fuel in the tank at a certain time. Or, a tank that is being emptied at a given rate, or a culture of bacteria growing in a Petri dish, or a population of a city, etc. This brings us to our next theorem.
Let denote the amount of some substance/population at the time .
Assume that the function is continuous, differentiable and its derivative, , continuous on some time interval .
Then, the change in the amount over the time interval is given by
The right hand side of the equation gives the “accumulation of a rate”. You can think of this definite integral as the limit of Riemann sums, where each Riemann sum is the“sum of the changes of the amount over small intervals of time”.
- (a)
- By how much has the population grown during the first three days of the experiment?
- (b)
- Compute the right Riemann sum of the function and the interval with . What does this Riemann sum approximate? Is this approximation an underestimate or an overestimate and why?
- (c)
- Find the population at any time .
Average value
Conceptualizing definite integrals as “signed area” works great as long as one can actually visualize the “area.” In some cases, a better metaphor for integrals comes from the idea of average value. Looking back to your days as an even younger mathematician, you may recall the idea of an average: If we want to know , the average value of a function on the interval , a naive approach might be to introduce equally spaced grid points on the interval and choose a sample point in each interval , .
We will approximate the average value of on the interval with the average of , , …, and : Multiply this last expression by :
where . Ah! On the right we have a Riemann Sum!
What will happen as ?
We take the limit as : This leads us to our next definition:
Multiplying this equation by , we obtain that If is positive, the average value of a function gives the height of a single rectangle whose area is equal toAn application of this definition is given in the next example.
What is the average velocity of the object?
(Reminder: is the position function, and the acceleration).
When we take the average of a finite set of values, it does not matter how we order those values. When we are taking the average value of a function, however, we need to be more careful.
For instance, there are at least two different ways to make sense of a vague phrase like “The average height of a point on the unit semi circle”
One way we can make sense of “The average height of a point on the unit semi circle” is to compute the average value of the function on the interval . Another way we can make sense of “The average height of a point on the unit semi circle” is the average value of the function on , since is the height of the point on the unit circle at the angle .See if you can understand intuitively why the average using should be larger than the average using .
Mean value theorem for integrals
Just as we have a Mean Value Theorem for Derivatives, we also have a Mean Value Theorem for Integrals.
This is an existential statement. The Mean Value Theorem for Integrals tells us:
The average value of a continuous function is in the range of the function.
- Proof
- Define an accumulation (area) function, , Since is continuous on the interval and differentiable on the interval , we can apply the Mean Value Theorem to the function on the interval . Therefore, there exist a number in such that But we know that , and that . Therefore,
We demonstrate the principles involved in this version of the Mean Value Theorem in the following example.