We derive the derivative of sine.

It is now time to visit our two friends who concern themselves periodically with triangles and circles. In particular, we want to show that Before we tackle this monster, let’s remember a fact, and derive a new fact. You may initially be uncomfortable because you can’t quite see why we need these results, but this style of exposition is a fact of technical writing; it is best to get used to it.

First, recall the fact that Next, we will use this fact to derive our new fact:

After these delicious appetizers, we are now ready for the main course.

What is the slope of the line tangent to at ?

For your intellectual stimulation, consider the following geometric interpretation of the derivative of .

PIC

From this diagram, we see that increasing by a small amount increases by approximately . Hence,

With all of this said, the derivative of a function measures the slope of the plot of a function. If we examine the graphs of the sine and cosine side by side, it should be that the latter appears to accurately describe the slope of the former, and indeed this is true.

PIC
Using the graph above, what is the value of in the interval where the tangent to the graph of has slope ? The function has slope at .

Now that we have derived the derivative of sine, we can mimic that idea to get a little desert: the derivative of cosine!