#### 1.1 Fundamental Principle of Counting

We use the Fundamental Principle of Counting.

#### 1.2 Set Partitions

We use partitions to enumerate sets.

#### 1.3 Complements

We use complements to enumerate sets.

#### 1.4 Permutations

We define and enumerate permutations.

#### 1.5 Combinations

We define and enumerate combinations.

#### 1.6 Circular Permutations

We define and enumerate circular permutations.

#### 1.7 Stars and Bars

We define and enumerate combinations of multisets.

#### 1.8 Combinatorial Identities

We use combinatorial reasoning to prove identities.

#### 1.9 Binomial Theorem

We explore the Binomial Theorem.

#### 1.10 Multinomial Theorem

We explore the Multinomial Theorem.

#### 1.11 Newton’s Binomial Theorem

We explore Newton’s Binomial Theorem.

#### 2.1 De Morgan’s Law

We use De Morgan’s Law to enumerate sets.

#### 2.2 Inclusion-Exclusion Principle

We use the Inclusion-Exclusion Principle to enumerate sets.

#### 2.3 Derangements

We use the Inclusion-Exclusion Principle to enumerate derangements.

#### 2.4 Relative Derangements

We use the Inclusion-Exclusion Principle to enumerate relative derangements.

#### 2.5 Euler’s ϕ Function

We present a formula for Euler’s $\phi$ function.

#### 3.1 Sequences

We will explore special sequences.

#### 3.2 Generating Functions

We will define, create and interpret generating functions.

#### 3.3 Exponential Generating Functions

We utilize exponential generating functions

#### 4.1 Pigeon Hole Principle

We use the Pigeon Hole Principle

#### 4.2 Ramsey Theory

We compute Ramsey numbers in small cases