Recall that for \begin{align*} x(t) &= \cos (t)\\ y(t) &= \sin (t) \end{align*}

gives a parametric plot of a unit circle. Describe the plot of \begin{align*} x(t) &= 3\cos (t)\\ y(t) &= \sin (t) \end{align*}

for .

Now describe the plot of \begin{align*} x(t) &= 2\cos (t)\\ y(t) &= 5\sin (t) \end{align*}

for .

We claim that an ellipse centered at the origin is defined by points satisfying \[ \left (\frac{x}{a}\right )^2 + \left (\frac{y}{b}\right )^2 = 1. \] Are the parametric curves we found above ellipses? Explain why or why not.

Here we have some plots showing two concentric circles and an ellipse that touches both. \[ \begin{tabular}{ccc} \par \begin{tikzpicture} \begin{axis}[ width=2.5in, clip=false, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{0} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} & \begin{tikzpicture} \begin{axis}[ clip=false, width=2.5in, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{pi/10} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} & \begin{tikzpicture} \begin{axis}[ width=2.5in, clip=false, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{2*pi/10} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} \\ \begin{tikzpicture} \begin{axis}[ width=2.5in, clip=false, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{3*pi/10} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} & \begin{tikzpicture} \begin{axis}[ width=2.5in, clip=false, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{4*pi/10} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} & \begin{tikzpicture} \begin{axis}[ width=2.5in, clip=false, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{5*pi/10} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} \end{tabular} \]
(a)
Can you guess parametric formulas for the circles and for the ellipse?
(b)
Do you notice anything about the dots in the pictures? Can you explain why this happens?
(c)
Can you give a compass and straightedge construction that will give you as many points on a given ellipse as you desire? Give a detailed explanation.

Can you give a parametric formula for this cool spiral? \[ \begin{tikzpicture} \begin{axis}[ width=3in, clip=false, axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \addplot [very thick, penColor, smooth,samples=100,domain=(0:8*pi)] ({x*cos(deg(x))},{x*sin(deg(x))}); \end{axis} \end{tikzpicture} \]
Remind me once more, do the formulas that produce these plots define functions? Discuss. Clearly identify the domain and range as part of your discussion.
2024-10-10 13:45:28