We claim that an ellipse centered at the origin is defined by points satisfying \[ \left (\frac{x}{a}\right )^2 + \left (\frac{y}{b}\right )^2 = 1. \]
Are the parametric curves we found above ellipses? Explain why or why
not.
Here we have some plots showing two concentric circles and an ellipse that touches
both. \[ \begin{tabular}{ccc} \par \begin{tikzpicture} \begin{axis}[ width=2.5in, clip=false, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{0} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} & \begin{tikzpicture} \begin{axis}[ clip=false, width=2.5in, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{pi/10} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} & \begin{tikzpicture} \begin{axis}[ width=2.5in, clip=false, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{2*pi/10} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} \\ \begin{tikzpicture} \begin{axis}[ width=2.5in, clip=false, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{3*pi/10} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} & \begin{tikzpicture} \begin{axis}[ width=2.5in, clip=false, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{4*pi/10} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} & \begin{tikzpicture} \begin{axis}[ width=2.5in, clip=false, domain=(0:2*pi), axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \pgfmathsetmacro{\a }{5*pi/10} \addplot [very thick, penColor, smooth] ({3*cos(deg(x))},{3*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{5*sin(deg(x))}); \addplot [very thick, penColor, smooth] ({5*cos(deg(x))},{3*sin(deg(x))}); \par \addplot [] plot coordinates{(0,0) ({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \par \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({3*cos(deg(\a ))},{3*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{5*sin(deg(\a ))})}; \addplot [color=penColor,fill=penColor,only marks,mark=*] coordinates{({5*cos(deg(\a ))},{3*sin(deg(\a ))})}; \end{axis} \end{tikzpicture} \end{tabular} \]
-
(a)
- Can you guess parametric formulas for the circles and for the ellipse?
-
(b)
- Do you notice anything about the dots in the pictures? Can you explain
why this happens?
-
(c)
- Can you give a compass and straightedge construction that will give you as
many points on a given ellipse as you desire? Give a detailed explanation.
Can you give a parametric formula for this cool spiral? \[ \begin{tikzpicture} \begin{axis}[ width=3in, clip=false, axis lines=center, unit vector ratio*=1 1 1, xlabel=$x$, ylabel=$y$, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ] \addplot [very thick, penColor, smooth,samples=100,domain=(0:8*pi)] ({x*cos(deg(x))},{x*sin(deg(x))}); \end{axis} \end{tikzpicture} \]
Remind me once more, do the formulas that produce these plots define
functions? Discuss. Clearly identify the domain and range as part of your
discussion.