$\newenvironment {prompt}{}{} \newcommand {\ungraded }{} \newcommand {\HyperFirstAtBeginDocument }{\AtBeginDocument }$

 (a)On the interval $[-6, -4]$, is $f'(x)$: $<0$ $=0$ $>0$ more than one of the above (b)On the interval $[-4, -2]$, is $f'(x)$: $<0$ $=0$ $>0$ more than one of the above (c)On the interval $[0, 2]$, is $f'(x)$: $<0$ $=0$ $>0$ more than one of the above (d)On the interval $[2, 4]$, is $f'(x)$: $<0$ $=0$ $>0$ more than one of the above
 (a)On the interval $[-6, -4]$, is $f'(x)$: increasing decreasing more than one of the above (b)On the interval $[-4, -2]$, is $f'(x)$: increasing decreasing more than one of the above (c)On the interval $[0, 2]$, is $f'(x)$: increasing decreasing more than one of the above (d)On the interval $[2, 4]$, is $f'(x)$: increasing decreasing more than one of the above
For how many values of $x$ in the interval $[-8, 10]$ does $f'(x)=0$? $\answer [format=integer]{3}$
 Largest: $f'(8)$ $\dfrac {f(8+\Delta x)-f(8)}{\Delta x}$ for $\Delta x > 0$ $f(-6)$ $f'(-6)$ Smallest: $f'(8)$ $\dfrac {f(8+\Delta x)-f(8)}{\Delta x}$ for $\Delta x > 0$ $f(-6)$ $f'(-6)$